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Amplification and Attenuation of Sound by Burning Propellants’

R. W. Hart? axDp R. H. CANTRELL?

Johns Hopkins Unaversity, Silver Spring, Md.

From the point of view of determining the acoustic stability of a solid propellant rocket
motor, it is vital to know whether or not a sound wave is amplified or attenuated upon reflec-
tion from the burning surface. If amplification occurs, instability may result. This question
has two parts to its answer. The first part concerns the burning response of the combustion
layer itself to an acoustic pressure fluctuation, and the second part concerns the matching of
an incident and reflected sound wave at the surface in order to determine whether the re-
flected wave has been amplified or attenuated. In previous theoretical treatments, it has been
customary to ignore the simultaneous existence of thermal or entropy waves when performing
this matching procedure. In this study, the authors carry out the detailed matching of the
thermo-acoustic field at the combustion zone boundary and examine the results in the light
of previous studies on the acoustic stability of solid propellant rocket motors.

'l‘HE ability of a burning solid propellant to amplify sound
frequently leads to rocket motors functioning as very
high-level acoustic oscillators. The deleterious effects on
motor performance are frequently of great importance and
are widely recognized. Thus, considerable practical im-
portance has been attached to the measurement of the ability
of propellants to amplify pressure disturbances. Such
experimental measurements are now becoming available, and
direct comparison with theoretical predictions will soon be-
come possible for the first time. Consequently, it seems
timely to re-examine the theoretical developments and to
begin to refine and adapt them to the enlightenment of ex-
perimental results.

The underlying cause of the phenomenon is conceptually
simple and has been discussed at length elsewhere (1).¢ In
the thin burning “boundary layer,” a rather intricate balance
pertains in the steady state between gasification rate and
flame speed. If the solid should begin to gasify at too fast a
rate, the flame front will be pushed back, the flow of heat from
flame to solid will be diminished, and the gasification rate will
be reduced. An analogous compensatory action will result if
the gasification rate should fluctuate downward or if the flame
speed should fluctuate. As long as the burning zone has time
to equilibrate between disturbances, the results will be quasi-
static. But when the surface is subjected to a succession of
disturbances, coherent in phase and closely spaced in time—
as it may be when enclosed in an acoustic cavity such as a
rocket motor—what will be the result? In order to determine
the response of the burning surface to a sound wave, one
should solve the associated equations obeyed by time-de-
pendent chemistry and fluid dynamices. The problem is repre-
sented schematically in Fig. 1. To the right of some plane
x = x;, the mechanical properties of the burned gases are de-
seribed by the usual acoustic equation; thus, when the burn-
ing zone is probed by an incident acoustic wave, the effect of
the burning propellant on the sound field exterior to the
boundary layer is described in terms of the acoustic admittance
of the plane z = z;. In general, however, the location of this
plane will not easily be determined experimentally, so that the
net effect is usually described empirically in terms of a virtual
specific admittance associated with the location of the solid
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surface. Of course, when the boundary layer is thin com-
pared with the acoustic wavelength, it is not necessary to dis-
tinguish between these two locations so far as the acoustic
field is concerned.

In part, the virtual specific admittance of the surface is de-
termined by the gross fluid dynamic conditions there, and, in
part, it is intimately related to the detailed characteristics of
the boundary layer. For this reason, it will be useful to de-
fine a dimensionless entity, the “reduced virtual specific ad-
mittance” y related to the virtual specific admittance ¥ by
the relationship

Y = —(@&/Ply

where 7; and P are the mean flow velocity and pressure in the
asymptotic region. It will be the problem of the theorist to
illuminate the detailed anatomy of this reduced admittance,
whereas the experimentalist can give it numerical values
without being diverted by questions of the rigor of the theo-
retical treatments.

In his attempt to determine the virtual reduced admittance
that the experimentalist measures, the theorist must recognize
immediately that the measurement equipment of the experi-
mentalist may be located in the far zone or in the near zone.

In the far zone, the actual admittance Y’ easily is related
to the local mass flow rate of the propellant gas. If the gas
pressure, density, velocity, and mass flow rate are denoted by
P, p, v, and m, respectively, and the incremental quantities
corresponding to these are defined by P = P(1 + ¢), p =
p(l + o), v =7+ ¢, and m = m(1 + p), where the bars in-
dicate time averages, then

_Yr:éf _12_/[:{1/_@1 [1a]

= g/P N P €r Ef
where the complex amplitude of a function f has been denoted
by f, i.e., f = Re(fe'*!). To the right of z = z,, the usual

sound field isentropic relationship /¢ = 1/ pertains (v is
the specific heat ratio), and Eq. [1a] may be written as

/A

2 1k 2
If Y, is known, a transformation remains to be performed in
order to express the virtual admittance which the experi-
mentalist measures. The problem will be somewhat more
complicated when measurements are made in the near zone
because of the relatively complex wave motion of the gas in
the anisentropic region.

In the near zone, close to the burning surface just exterior
to the gas phase combustion sublayer, it will be appropriate to
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use the admittance Y’, defined by the relationship

r__ P _ Bl _ G
Vi==:5""38\% "3 [le]

As one should expect, the ratio &/¢ will be unity at zero fre-
quency and will remain near unity at low frequencies.

Thus, the central problem of the analyst must be the solu-
tion of the several physical and chemical equations that de-
scribe the burning rate response of the solid propellant to the
acoustic field. The task is not an easy one, complicated as it
must be by the intricacies of the poorly understood chemical
processes themselves. Useful progress has been made, how-
ever, at a rather impressive cost in approximations, and it now
seems advisable to examine previous work in an attempt to
remove or refine such approximations as may submit to a new
assault. In this study, only the acoustic boundary sublayer
will be considered.

Acoustic Beundary Sublayer

In previous work on solid propellant rocket motor combus-
tion instability, when attention has been focussed on the re-
sponse of the burning rate of the propellant to pressure dis-
turbances, it has been focussed primarily on the determina-
tion of w. Then, in discussing the effect to be expected due
to an impinging sound wave, it has been customary to collapse
the acoustic boundary sublayer entirely (1-4). This is com-
mon practice in acoustics, where it usually corresponds to the
neglect of the very small thermal loss from the sound field
into the boundary wall. In the present case, however, the
potential gain due to the burning propellant turns out to be
very small also, and the effect of this collapse on the calcula-
tion of the admittance deserves critical examination. The
order of magnitude of the effect to be expected, as pointed out
by Summerfield (5) and others, is presumably indicated by
considering the extreme case of the low frequency limit. In
that limit, one may assume an isothermal rather than an isen-
tropic acoustic field, and the 1/v in Eq. [1b] would then be
replaced by unity. Since the quantity u,/e;in Eq. [1b]is fre-
quently not far from unity, the collapse of the acoustic bound-
ary sublayer is often an untenable approximation.

The first task, then, will be that of expressing the admit-
tance Y(z) at any arbitrary plane where the pressures and
velocities might be measured in terms of the quantities w, and
€, which have been estimated previously (2). The second
task will be that of relating this admittance to the virtual
admittance, which may be directly observed experimentally.

For present purposes, the dynamics of the gas in the region
exterior to the combustion sublayer will be described by the
equations of energy, momentum, and mass transport in only
one dimension (plus the equation of state of an ideal gas).
Thus, the problem will be rather more messy than difficult,
and only the major signposts will be displayed along the way
to the final result of the analysis. For a more detailed discus-
sion of the solution of the basic equations, the reader may
consult, for example, Ref. 6. A convenient representation of
these equations is:

Energy

—(0/0z)(Fpv® + poC,T) + (NO*T/02?) =
(0/0)(C.pT + §pv*)
Momentum
(1/p)(0P/0x) + (v0v/0x) + (0v/0t) =
Mass
(0/0z)(pv) = —(0p/0)
State
= P/[(C, — C)T]
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Fig. 1 Schematic diagram showing a cross section normal to the
solid propellant surface

A is the thermal conductivity, T'is the temperature, and C,, C,
are the heat capacities at constant pressure and constant
volume, respectively. One should note here that the gas
viscosity has been omitted, whereas thermal conductivity has
been retained. Obviously, this will not be justifiable at fre-
quencies so high that the visco-acoustic damping length be-
comes so short as to be comparable to the distance z; — s,
which is the distance scale of interest. But one will recall that
In acoustic theory the thermal and visecous damping lengths
are at least of the same order of magnitude, so that it might at
first appear that, if thermal conductivity is considered, then
viscosity should be retained also. However, in the present
case, both of these damping lengths will be so long that their
effect on the sound (isentropic) component of the gas motion
will turn out to be negligible. The importance of retaining
heat conduction arises because of its contribution to the damp-
ing of the nonisentropic component of the gas motion, in
which the gas viscosity plays an insignificant role.

The next step will be to perturb about the steady state and
discard all terms of second and higher order in the sound field
quantities. In the region (z > x,), one notes that the time
average flow field quantities are independent of position, so
that the four fundamental equations become

v —1 —)\Tﬂ 3 10¢ | 7704 vO€
<02 >(§bx2+2 Ox+26x>+ +

bq?_—iwé_ v — 1\[ twév? .o
o = o ( Iz )[ 3 iend | eal

(c*/7)(0€/0z) + (0$/0z) + iwd = 0 [2b]
(#06/0z) + (0/02) + w5 = 0 [2e]

and

=
II
m
I
ST
S
jol

where
=T+ ¢) 2=~P/p v =C,/C,

and where the time derivative operator has been replaced by
tw in the usual way, thereby confining attention to harmonic
fields.

Eliminating ¢ with the aid of Eq. [2d] and trying an z de-
pendence of the form e for the remaining unknown quantities
in Eqgs. [2a—2¢], one immediately finds three equations that
must be satisfied simultaneously. These may be written as

{a; & + a;.26 + a,38} = =1,2 3 [3a]

where the a’s are functions of s and are given as

-1 — )
o1 = (Y_ 5 >)\Ts2 — s = X
pc Y
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Y= 1\~ (vy—=1 _
e = — (—ﬁ02 ) ATs? — Tom 73 —
1 iw(v)?
D) ( 1) — (3b]

3 [y —1\ _ ¥y—1\. _
al,3=-—-§< o >(v)2s—s—( o )wv

a1 = ¢%/y a2 =0 02,3

I

iw -+ s

a1 = 0 Q3o = US + tw az3 = 8

In order for a solution to exist, the determinant of the a’s must
vanish, and since the determinant is a quartic in s, this defines

four “waves” out of which the complete solution is to be
composed. 'Thus, one will have, in general,

i

€ glesw _|_ gzesz:c + Eseszx + ”€‘4es4x
[3c]

¢ = é’lesxz + (fzeszx -+ (i)'gesax + q';wsax

and analogous expressions for & and . The four values s; are
the four roots of the determinant D which finally reduces to

3

0=D= % {s“ [M4(1L — yMY)7e] — s° [322"—7 Msf,c} +

T ) — (sM + %“’)[(1 + M)s + %"’} X

[:(l — M)s — %w}} [4a]

M=1u/c

sy

where
7o = [(y — DAT]/p0*

Although the analysis can be carried through formally
without determining the four s;’s, it will be necessary to eval-
uate them for any numerical caleulations. For that purpose,
it will be convenient to order these roots according to their
magnitude. The smallest s, say s, corresponds to the acoustic

- (isentropic) wave traveling to the right. One finds

s = —[tw/c(l + M)A + AJ) [4b]
where
. v —1 M+ . Aa
A, = —1lwrT. <—2—> (1+—‘W + O[(twr.M*)?]

The real part of s corresponds to thermal damping of the
acoustic wave and is very small for ordinary burning veloci-
ties, even at very high frequencies (e.g., for M = 3 X 1073
7. = L sec, ¢ = 105cm/sec, ¥ = 1.2, one has real sy =~ —10-5
em~1at 105 cps, corresponding to a damping length of 1000 m).
The next larger root, s,, corresponds to a sound wave incident
from the right and is given by

8 = +liw/e(l — M) — AJ) [4c]
1 (ét
Y, = P(e1+e2>

b
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From this point on, A, will be ignored. The third root
corresponds to thermal or entropy wave.5 One finds that

83 = —(tw/Mc)(1 + A) [4d]

where
A = (1/M?1)[(i/2) — Mwr. — (2/2)(1 + 4sM207,)1/?]
[4e]

Eq. [4e] is correct to terms of order M? at low frequency and
also at high frequency, provided that M2wr, is not much
greater than unity. Thus, the approximate expression Eq.
[4e] will encompass the domain of Mach numbers and fre-
quencies of interest here. (For a typical case, M2 = 103,
7. = 1+ sec, the quantity M%*wr, becomes unity at about 10
eps.)

The fourth and final root of the determinant is given to the
same order of approximation as s; by the expression

8 = (w/Me)(1 + A) [4f]
where
A, = [1/M2wr1,)[(1/2) — MPor, + (1/2)(1 + 4iM*w7,)V?]
[4g]

Thus, this fourth “wave’’ corresponds in the limit of zero flow
or high frequency to that solution of the simple heat conduc-
tion equation which becomes infinite as  — 4 . (Note that,
for typical values considered in the previous example, the real
part of s, corresponds to a damping length of ~10-3 cm.)
This “wave” would correspond to a thermal source down-
stream, so for the present problem &, ¢, ¥4, & vanish as a
boundary condition.

Now return to a consideration of the solution to the con-
servation equations, as expressed by Eq. [3¢], and to evalua-
tion of the coefficients €;, ¢,, ¥, and &;. The first step will be
that of selecting one of these quantities to play the role of in-
dependent variable and then expressing each of the others in
terms of it. Here it will be convenient to select the pressure
amplitude & of the incident acoustic wave as independent
variable. From the momentum and mass conservation
equations, one easily obtains the relations

Ry /50
i = vy (G + 5s,) © 2
i=1234

and
”‘v(mwwm>“ [ob]
j=1,2234

It will be necessary to determine two complex admittances,
Y and Y’, which are defined to be the ratio of acoustic (isen-
tropic) velocity to acoustic pressure amplitudes and the ratio
of total fluctuating velocity to total fluctuating pressure, re-
spectively. Using Eq. [5a], one obtains

) & El + 82
o liw T8 &t T T,

T yP

= [6a]
(1 + 9)
€ 5

3 The terminology that seems most appropriate depends on the velocity and frequency regime of interest. If the mean velocity vanishes
(or if the frequency becomes sufficiently high), this “wave’ corresponds to the solution of the simple heat conduction equation

NoT'/ox?) = (/dt)(pC,T)
which vanishes as z — + «, and in this regime the term thermal wave or thermal wave front is apt. For usual flow velocities and fre-

quencies not too much higher than 102 cps

sz = —(lw/Mc)[1 + wrsM? + terms of higher order in (fwrsM?)]
Thus, in this domain, this third type of wave travels away from the surface at a speed equal to the mean flow speed, and with a damp-

ing length =~ (¢/w?r.M), which typically will be of the order of 5 crm at 1000 cps, whereas the wavelength is about 0.3 ecm. In this regime,
it 1s convenient to think of this component of the solution as an entropy wave.
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Note that the distance (x; — x3) is negligibly small compared with the acoustic wavelengths of interest, so that Eq. [6a] expresses
the virtual admittance referred to in the introduction. TFurther

[ : (é> + ? + : ‘érsil
, (i;b . 1 ((51 + (52 + 63) c? Tw + 1781 'EQ i(:.) + 89 iw + USs éz
WES T TP Grate | I i
[7‘ + 1+ 7]
b €3 €2 1]

Thus, it will be essential to evaluate the ratios &/€ and &/& at z = xs.

In order to complete the solution, one must apply the appropriate boundary conditions. Since theoretical considerations of
the burning region will lead to specification of quantities at = x, the boundary equations will, in general, relate the quantities
B, Yo, and G = (0J/0x)z=z. Thus, one must satisfy. the following three equations:

- I 70 Y o) 1 s
SRR <”’ i c> S B © [(w Tt Me (o + vsa} [7a]
. . 2 s 2
S P [Ty o
’ =124 ’ j=§,3,4 v \tw + 7s; [

- ~ 2 S; 2
G, = s:0.e8iT = E‘S-[l . 9_( i >:| 76
' j=§,3,4 i j %,34 “ v \tw + Ds; [7c]

where z; has been set equal to zero for convenience. Finally, one also requires & = 0.

Thus, regarding é, as the independent, arbitrarily assigned quantity, Eqs. [7a—~7c] constitute a set of three inhomogeneous linear
equations in the three unknowns &, &, and &. The ancillary requirement that & = 0 implies one relationship between f,
s, and G, so that these three quantities cannot be specified entirely independently. Combustion zone theory will typically pro-
vide just the necessary two remaining independent boundary condition relationships. The first is a relationship between the
fluctuating mass flow rate and the pressure, and the second is a relationship between the fluctuating temperature, temperature
gradient, and pressure. This second relationship has, in linear perturbation theory, the general form

¥» = Byés + BG, [7d}

where the B’s are determined from the combustion zone theory. The particular case of the theory of Ref. 1 is worked out in
detail in the Appendix. Solution of the boundary equations is moderately tedious, but one finally obtains the two expressions

for the admittances ¥ and Y':
- () - 2 (4]
_ L& Y 1+ A)\&

Vi =~ 17’ E) - 1— J el
Pla | v _ M]
[(1 + A) 1+ a)
and
Y = — (/P) {(m/a) — 1 + /@) (8b]

Eq. [8b] can, of course, be obtained directly from Eq. [1e¢] by using the gas law, and this result serves mainly to give some con-
fidence in the correctness of the lengthy algebraic manipulations. One can recognize the two special cases: 1) the isentropic
situation for which »/& — (v — 1)/v and Y, = Yy’ — —(5/P) [(#i,/&) — (1/7)], which is the result obtainable directly from
the simple acoustic relationship between density and pressure; and 2) the low frequency limit for which ¢ — 0, A — 0, for which

Yy — —@/P) (/&) — 1]

which is the expected result for this limit.
An incidental result is also of some interest, however. One also may determine the density amplitude of the “entropy” wave.
Solving the boundary equation for &s, one finds

; 2(1 + A)2 [Z.;__l —- ﬂ’:]

€
— = - — ' — _ - [8c]
7[1+A(1+M>]{“J7——A+M[1—‘.’—"—%f]—MAfﬁ—Mm[l—f—b—’.‘—”]}

€ € € €y

Note that &; vanishes in the isentropic limit s/& — (v — 1)/, as it should.

To complete the solution, it is necessary to express the temperature perturbation i in terms of known quantities. Eq. [7d]
provides one relationship between ¢, G, and € at the boundary, and the condition that & vanish provides the second such
relationship, which then permits determination of ¢4. Solving Eqs. [7a-7¢] for the condition that & = 0, one obtains

l:—cMG'b_M2('y—1) B 2\ 4 oo 28
b v—1_ 105, 1-° \& « 1+ A

& . M _(r=DY_ 2y — DA
ERR <7A2 o= G M )

{8d}
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As one limiting case whose result is familiar, one may con-
sider a rigid, nonpyrolyzing surface. In that limit, the be-
havior must be isentropic if the boundary heat loss is zero,
ie., if G, = 0. Some care must be exercised in passing to the
limit, but the correct result (¥/€) — (v — 1)/ is finally ob-
tained. In the slightly more general limiting case of a non-
rigid, nonpyrolyzing surface (the ordinary acoustic problem),
a small temperature gradient at the surface, z,, will exist even
in the isentropic case. That temperature gradient corresponds
to the proper value for a sound wave. For the more general
case M = 0, it can also be verified directly that the term

MGy A=) (2 2)]
W & 1 — M? & v

=
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At first glance, this might seem rather startling because of
the rather effective thermostating action provided by com-
bustion. On second thought, however, one recognizes that
the boundary conditions for the fluid dynamical equations
include not only the temperatures but also the temperature
gradients at the boundaries. Thus, it should not be surprising
to observe ,/€ departing from zero at the relatively low fre-
quencies for which time-dependent heat conduction in the
solid phase becomes relevant. These considerations can be
displayed analytically in a convenient way by confining one’s
attention to the usual regime of flow velocities and frequen-
cies. Then it is possible to take advantage of the smallness of
the quantities M2 and A to obtain a relatively simple expres-
sion for the temperature response at z,. Eqs. [8d], [7d],
[A8], and [A9] combine to yield

(7 ; 1) wr(l + A) + |:— AC) + ﬁ—l — Fa ~—‘iw—’;'(] In <CPT1 * h>i|
b

CpTo + A

€

L3

Cpr

e + twr(1 4+ A)

vanishes for an isentropic field. Now by referring back to

Eq. [7d], one may eliminate G, and the admittances are then
expressed in terms of the quantities fi/¢, B, and B, which
must be obtained from theory of the combustion zone. There
would seem to be little point actually in displaying the final
result, in view of the complexity of the result. Substitution
of Eq. [8d] into Egs. [8a] and [8b] yields the final expressions
for the admittances Y and Y”’. In the following section, these
results will be discussed in terms of the combustion zone
theory of Ref. 1.

Discussion

Now that the expressions ¥ and ¥’ have been obtained, one
turns toward a discussion of their use. The virtual acoustic
admittance Y is the ratio of acoustic velocity to acoustic pres-
sure at the burning surface. Thus, it specifies the boundary
condition for sound (isentropic) waves at the propellant
boundary and would be determined from experimental
measurements carried out in the far zone where the anisen-
tropic field vanishes. The quantity Y’ specifies the ratio of
fluctuating velocity to fluctuating pressure, including both
isentropic and anisentropic components adjacent to the pro-
pellant surface (i.e., just outside the very thin induction gas
phase reaction zone). Thus, Y’ would be determined by
direct measurements (of, say, the fluctuating pressure and
velocity) in the near zone, close to the burning propellant.
Eqs. [8a] and [8b] display the structure of these two ad-
mittances as determined by solution of the equation of fluid
flow, in the linear approximation that is valid for small
" fluctuations from the steady state.

Since the form of Y’ is the simpler, the discussion will begin
by an examination of it. Calculation of the actual fluctuating
temperature amplitude at z, requires a theoretical treatment
of time-dependent burning in the combustion sublayer. The
most complete treatment yet available is that of Ref. 2, and
in an attempt to evaluate the type of behavior which might
be expected, Eq. [8b] has been calculated for several test
cases using that theory. Typical results are shown in Figs. 2
and 3. The amplitude of the temperature response, as indi-
cated by /€, is shown by the lowest curve of Fig. 2. The
dashed curve displays the large brackets of Eq. [8a]. It is
this bracket that has been set equal to 1/ in previous treat-
ments, and amplification at the propellant surface occurs
when Re(fi»/é) lies above the dashed curve. It is clear that
the boundary condition at z; is not, in general, an isothermal
one, even at moderately low frequencies of a few hundred
cycles per second.

It is the quantity J(w) that contributes toward the significant
magnitude of ¥,/ at moderately low frequencies, and one re-
calls that J(w) arises through consideration of time-dependent
heat conduction in the solid. It becomes clear, therefore,
that, in general, the temperature boundary condition at the
downstream side of the combustion boundary layer corre-
sponds to an isothermal one only at quite low frequencies.
On the other hand, for frequencies such that the isothermal
limit becomes invalid, the boundary condition is not a simple
one, and the interpretation of a measurement of ¥’ in terms
of either the mass response or the temperature response will
require additional information such as, for example, the
measurement of the acoustic admittance Y. Tt is clear from
Eqgs. [8a] and [8b] that determination of both ¥ and Y per-
mits determination of both i,/ and /¢,

From the point of view of the ability of the burning surface
to amplify sound, the acoustic admittance Y is a quantity
of central interest. If the real part of ¥ should be negative,
then sound is amplified upon being reflected from the burning
propellant surface, and instability will result unless acoustic
losses elsewhere are sufficiently large. Unfortunately, per-
haps, the structure of ¥ as displayed by Eq. [8a] is not
terribly illuminating. One will recognize; however, that in the
isentropic limit

@b/é,, - (v — 1)/~
s0 that

Yy — —@/P) (/&) — (1/v)]

As has been noted, it has been conventional, in earlier discus-
sions on this subject, to neglect the acoustic boundary layer
in the theoretical calculation of Y. This is equivalent to as-
suming the isentropic limit, i.e., to ignoring the correction to
1/v (in Eq. [8a]) which arises because of nonisentropic be-
havior of the gas near the boundary. Thus, it has been said
that the propellant amplifies sound if f,/€ > 1/v. In order
to explore the significance to acoustic stability of the nonisen-
tropic acoustic boundary layer, the combustion zone theory of
Ref. 2 has been used to calculate the quantities appearing in
Eq. {8a]. Results for two such calculations are shown in Figs.
4 and 5. In each of these figures, the real part of y, is shown
by the solid line, and the real part of y" is shown by the
dashed line. (These bracketed terms in Eq. [8a] would have
been replaced by 1/7 in earlier treatments where the acoustic
boundary layer was not considered, and the reduced admit-
tance that would then have been obtained is shown by the dash-
dotline.) Amplification would result whenever the solid curve
lies above the zero axis, and an appreciable effect on the
domain of amplification can occur, as illustrated by Fig. 5.
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Fig. 2 Sample mass response and temperature response func-
tions according to the theory of Ref. 2. In this example, the
propellant parameters are m = 2.37 g/cm2-sec,j = 0.4, n = 0.43,
P = 34atm, Ty = 1125°K, a = —0.3, T. = 300°K, A, = 40,000
cal/mole, p. = 1.58 g/cm? molecular weight = 24.8, 7 =
2130°K, Ty = 2506°K, N = X\; = 5 X 107* cal/cm-sec-°K, v =
1.23, hy = 200 cal/g, ¢s = ¢, = %

The very low frequency behavior is, of course, expected.
The quantity fi,/& — n, the usual pressure index in the
steady-state burning law, and ,/& — 0 as the steady state
(zero frequency) is approached. Eq. [8a] can be simplified
somewhat if attention is restricted to the usual burning
velocity and frequency domain. Then it will be entirely
reasonable to neglect terms of order M2A compared with unity,
and Egs. [8a], [8d], and [7d] may be combined to obtain

Y =~ —@/P)[(n/&) — (1 — B,)]

In the theory of Ref. 2, the quantity B,, which measures the
temperature response to fluctuating pressure, acquires a
rather large negative real part as the frequency becomes very
high. It is for this reason that the dashed lines of Figs. 2 and
3 show their monotone increase at high frequency, and such
behavior probably should not be found if one used a combus-
tion zone theory completely valid at very high frequencies.

Conclusion

In the light of such theory as now exists, it would seem that
the domain of instability is somewhat compressed by the
inclusion of nonisentropic behavior of the acoustic boundary
sublayer. In so far as the function of theory is to interpret ex-
perimental measurement, it has been seen that the necessary
structure exists, although that part which pertains to the
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Fig. 3 Sample mass response and temperature response func-

tions according to the theory of Ref. 2. In this example, the

propellant parameters are the same as those of Fig. 2 except for

the following: m = 1.52 g/em?-sec, j = 2.0, n = 0.68, Ty =

775°K, a = 1.0, ps = 1.62 g/cm3, molecular weight = 26.8, 7', =
2560°K, T, = 3012, vy = 1.22
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Fig. 4 Sample calculation showing the effect of the acoustic

boundary layer on admittance for the propellant of Fig. 2. The

dash-dot curve would have been obtained if the acoustic bound-

ary layer had been ignored. Amplification occurs where the
solid line lies above the zero axis

combustion zone itself is undeniably very crude. Thus,
measurement of the temperature response (,/€) as well as one
of the admittances ¥ or ¥’ could be desirable, particularly in
the high frequency domain, because it would permit compari-
son with mass response measurements without appeal to
combustion zone theory.

Although measurement of acoustic admittance is entirely
adequate for the question of propellant acoustic amplification,
the theoretician and, hopefully, the experimenter will feel
compelled to inquire as to whether or not the structure of the
admittance as displayed by the theory is a sufficiently com-
plete representation of the problem. With good fortune,
features of the theory will be in agreement with experiment,
and one may hope that the nature of the diserepancies will
help to focus attention on the most important shortcomings
in attempts to analyze and understand the results of an im-
pressively complicated interplay between a variety of physico«
chemical processes in the combustion instability of solid fuel
motors.
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Appendix: Combustion Zone Relationship

In Refs. 1 and 2, the ignition temperature T, is assigned
afixed value, and expressions are derived for the mass flow rate
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Fig. 5 Sample calculation similar to Fig. 4, except that the
propellant corresponds to that of Fig. 3



404 R. W. HART AND R. H. CANTRELL

at both z; and z,. [f these expressions and the conservation
equations are used, boundary relationships at = z; will be
obtained as follows. Since the gas phase reactions themselves
are assumed to be fast, m, = my, i.e., o = p1. The energy
conservation equation across the thin zone z; — x, yields the
expression

[(AOT/0z) — mC, Tl = [(AOT/0z) — mC,T — mQ],,
[A1]
where @ is the heat released per unit mass in this zone by

burning. Taking increments from the steady state and using
the steady-state relationships

(OT/d2)sy = OT;/0x = 0 [A2]
—AC, T = NQT/0x)., — MC,T, — MQ [A3]

and (cf., Ref. 1)
AQT/dz)., = M(C,Ty + k) [A4]

one finally obtains

N, AD (CTs + )
Y = #C,p Gy ’rTlC’p'.T’/ G+ wm I: C',,T/ ] [A5]

where G; = (0¥//dx) Tl. The quantity G; can be calculated
from Ref. 1 as follows. Application of the equation of energy
conservation across the induction zone gives directly

N
AOT/07)z =z, — mCpTy] — [NOT/02)z =z, — MCpTo] =
wCpTér, [A6]

since the pressure is assumed constant across the thin induc-
tion zone, the mean thickness of which is 7;. Using Eq. [6a]
of Ref. 1 for (0T /0x)., perturbing Eq. [A6], and then using
Eq. [A5] leads to the result

ATAA JOURNAL

c NG, _TCT+R T [R+JTT
1M’—ir'zC’,,_l_'ul': [ :I {Tf”1+[Cpr]Mo+

twroh . C,T: + h)}
— 1 —

AT, € n(C,,TO ) 1A7]
where fi,, fi,, and J are frequency-dependent quantities deter-
mined in Ref. 1. Eq. [A7] is the relationship between the
temperature fluctuation and the temperature gradient fluctua-
tion which is obtained from Ref. 1. Both f, and f, quantities

are determined in terms of the pressure, so that one has, re-
ferring to Eq. [7¢]

SN OR
P e Lo T, LCT, I\ €

iwroh - [CoTy + h)
O T, 1“(01,:1‘*0 ¥u) s

and
B, = \/mC, [A9]

Analogous expressions are obtained if one uses Ref. 7, wherein
i, flo, and J must be replaced by J* and the values of & and
i as calculated in Ref. 7.
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AIAA Space Flight Testing Conference

MARCH 18-20, 1963
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Critical test, operations, and support problems require solution before many of the currently planned missions in
space can be performed—notably the manned lunar landing mission. It is estimated, in fact, that 60-70% of the
total effort associated with space vehicle development is directed at test, operations, and support. This conference

on flight testing will be devoted to these problems.

The program is directed at the level of specialists who are
themselves capable of participating in problem solutions.

Session topics are as follows: Facilities and Logistics for Pre-Launch Flight and Recovery Operations @ Expe-
riences with Checkout and Flight Testing of Manned Space Vehicle Systems (Mercury, Gemini, X-15, etc.) @
Experiences with Checkout and Flight Testing of Unmanned Space Vehicle Systems @ Plans for Checking Out
and Testing Future Space Vehicle Systems @ Implications to Space Flight Testing Operations of Scientific Data
from Recent Experiments @ Implications of These Data to the Problems of Space Operations and Support
® New Developments in Data Collection and Processing, Including Range Instrumentation and Airborne Instru-

mentation.



